AI-1539
M.A./M.Sc. (Previous)

Mar.-Apr. 2021
Compulsory/Optional
Group- MATHEMATICS

Paper-

Name/Title of Paper- ADVANCED ABSTRACT ALGEBRA
Time: 3:00 Hrs.]
[Maximum Marks: 100
[Minimum Pass Marks: 36
Note: Attempt any five questions. All questions carry equal marks.

1. a. Let G be a group and let G^{\prime} be the derived group of G^{\prime} then show that
i. G / G^{\prime} is abelian
ii. If $H \leq G$ Then G / H is abelian if and only if $G^{\prime} \leq H$.
b. Show that every important group is solvable.
2. a. Let H and K be distinct maximal normal Subgroup of G . Then Show that $H \cap K$ is a Maximal normal Subgroup of H and also of K .
b. Show the a simple group is Soluble if and only if it is cyclic.
3. a. Give an example of a non-abelian group each of whose Subgroup is normal.
b. If G is a Cyclic group such that $|G|=P_{1} P_{2} \ldots \ldots \ldots . . P_{\mathrm{r}} P_{i}$ distinct Primes, Show That the number of distinct composition series of G is r !
4. a. Let N be a normal Subgroup of the group G. Then Show that G / N is a group under multiplication, The mapping $\emptyset=G \rightarrow G$ Given by $x \rightarrow x n$, is a surjective homomorphism and Ker $\emptyset=N$.
b. Let Show that a group of order P^{n} (P Prime) is impotent.
5. a. Show that In a nonzero Commutative ring with unit and ideal M is maximal if and only if R / M^{\prime} is a field.
b. Let A and B be two mxn Matrices over a field F . Show that $\operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$.
6. a. Let R be a Commutative ring with unity in which each ideal is prime then show that R is a field.
b. Show that the Sub modules of the quotient module M / N are of the form U / N, Where U is a Sub module of M Containing N.
7. a. Let $P(x)$ be an irreducible polynomial if $F[x]$. Then Show That There exists an extension E of F in Which $P(x)$ has a root.
b. Is $R \sqrt{-5}$ normal over R ?
8. a. Prove that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over Q. find the degree of $Q(\sqrt{2}+\sqrt{3})$ over Q.
b. Let F be a finite field. Then Show that there exists an irreducible polynomial of any given degree n over F .
9. a. Let A be a minima left ideal in a ring R. Then show that either $A^{2}=(O)$ or $A=R e$, There is an idempotent in R .
b. Let H be a finite Subgroup of the group of automorphism of field E , Then Show that

$$
\left[\mathrm{E}: \mathrm{E}_{\mathrm{H}}\right]=[\mathrm{H}]
$$

10. a. Let N be a nil ideal in a noetherian ring R, Then Show that N is idempotent.
b. Show that the Polynomial $x^{7}-10 x^{5}+15 x+5$ is not Solvable by radical over Q.
